๐ง Ragmint MCP Server
AI-Powered Optimization for RAG Pipelines
This server provides 6 MCP Tools for RAG pipeline tuning, dataset generation & workspace control โ all programmatically accessible through MCP clients like Claude Desktop, Cursor, VS Code MCP Extension, and more.
๐ง MCP Tools
- ๐ Upload Docs: Upload .txt files to workspace for evaluation using
upload_docs. - ๐ Upload URLs: Import remote docs via URLs with
upload_urls. - ๐ง Optimize RAG: Full hyperparameter search (Grid/Random/Bayesian) with metrics on
optimize_rag. - โก๏ธ Autotune RAG: Automated recommendations for best chunking and embeddings with
autotune. - ๐งฉ Generate QA Dataset: Create validation QA pairs with LLMs for benchmarking using
generate_qa. - ๐๏ธ Clear Cache: Reset workspace and delete stored docs with
clear_cache.
๐ง What Ragmint Solves
- Automated RAG hyperparameter optimization.
- Retriever, embedding, reranker selection.
- Synthetic validation QA generation.
- Evaluation metrics (faithfulness, latency, etc.).
- Experiment tracking & reproducible pipeline comparison.
๐ฌ Built for RAG engineers, researchers, and LLM developers who want consistent performance improvement without trial-and-error.
โ Powered by
- Optuna (Bayesian Optimization).
- Google Gemini 2.5 Flash Lite/Pro.
- FAISS, Chroma, BM25, scikit-learn retrievers.
- Sentence-Transformers/BGE embeddings.
๐ MCP Connection
HuggingFace Space
https://huggingface.co/spaces/andyolivers/ragmint-mcp-server
MCP Endpoint (SSE โ Recommended)
https://andyolivers-ragmint-mcp-server.hf.space/gradio_api/mcp/sse
๐ฆ Example MCP Use Cases
- Run Auto-Optimization for RAG pipelines.
- Compare embedding + retriever combinations.
- Automatically generate QA validation datasets.
- Rapid experiment iteration inside Claude/Cursor.
Upload Documents
๐ Upload files (local paths or URLs) to your data/docs folder.
Upload Documents from URLs
๐ Upload files (URLs) to your data/docs folder on MCP.
Autotune RAG
โก Automatically tunes RAG pipeline parameters based on document analysis.
Optimize RAG
๐ง Explicit optimization request for RAG (Retrieval-Augmented Generation) pipelines.
Generate QA
๐งฉ Generate a validation QA dataset from documents for RAG evaluation.
Clear Cache
๐๏ธ Deletes all files and directories inside docs_path on the server.